

Top 5 Reasons to Use Agilent Precision SMU Products for Solar Cell Evaluation

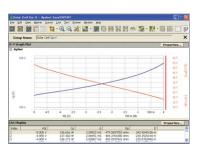
Agilent Parameter & Device Analyzers can improve the yields and efficiencies of your solar cells

Broad range of measurement capabilities facilitate device evaluation

We can help you:

- Evaluate solar cell IV characteristics using any of Agilent's precision SMU products. This gives you great flexibility to select a solution that meets your exact needs.
- Perform CV and Cf characterizations using the B1500A's and B1505A's MFCMU module. This allows you to determine important parameters such as carrier density, defect density and charge traps.
- Make high-speed time domain measurements using the B1500A's WGFMU module. This enables you to evaluate solar cell transient characteristics without the need for any other external instruments.
- Streamline your data analysis using EasyEXPERT's intuitive and easy-to-use test environment.

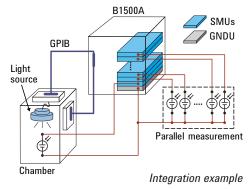
IV measurement				
Symbol	Parameter name			
Isc	Short circuit current			
J_{sc}	Short circuit current density			
V _{oc}	Open circuit voltage			
P_{max}	Maximum power point			
I _{max}	Current at maximum power point			
V_{max}	Voltage at maximum power point			
FF	Fill factor			
η	Conversion efficiency			
R_{sh}	Shunt resistance			
R_s	Series resistance			


Device parameters for solar cells

IV characteristics

Capacitance measurement			
Symbol	Parameter name		
C_p	Parallel capacitance		
N _c	Carrier density		
N_{dl}	Drive-level density		

Time domain measurement			
Symbol	Parameter name		
Т	Minority carrier lifetime		
S	Surface recombination velocity		
L _d	Minority carrier diffusion length		



CV characteristics

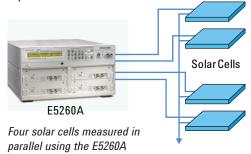
2 Easy integration with other equipment to create a complete measurement solution

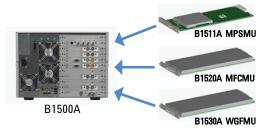
We can help you:

 Control other instruments and equipment over GPIB or other interfaces using EasyEXPERT software.

Wide product portfolio covers applications from R&D through production

We can help you:


- Choose the most cost-effective solution based on your measurement needs. We have a wide variety of products, from 2-channel SMU instruments to all-inone device analyzers.
- Configure a modular solution that is both flexible and expandable. The E5260A and E5270B are 8-slot modular SMU products; the B1500A and B1505A are 10-slot products and support a variety of modules in addition to standard SMUs.
- Solve your high current and high voltage testing needs. The B1505A can measure up to ±20 A and ±3000 V, which allows it to perform both solar cell and solar module measurement.


Product number	Product name	DC specifications	
		Min resolution	Max current/ voltage
B1500A	Semiconductor Device Analyzer	0.1 fA/0.5 μV	±1 A/±200 V
B1505A	Power Device Analyzer/ Curve Tracer	10 fA/2 μV	±20 A/±3,000 V
E5260A	8-slot High Speed Measurement Mainframe	5 pA/100 μV	±1 A/±200 V
E5262A	2-channel High Speed SMU (MPSMU X2)	5 pA/100 μV	±0.2 A/±100 V
E5263A	2-channel High Speed SMU (MPSMU, HPSMU)	5 pA/100 μV	±1 A/±200 V
E5270B	8-slot Precision Measurement Mainframe	0.1 fA/0.5 μV	±1 A/±200 V
4155C	Semiconductor Parameter Analyzer	10 fA/0.2 μV	±1 A/±200 V
4156C	Precision Semiconductor Parameter Analyzer	1 fA/0.2 μV	±1 A/±200 V

Fast, efficient and expandable parallel measurement

We can help you:

- Increase solar cell IV measurement throughput.
 The E5260A can measure in parallel on up to 8 channels.
- Improve test execution speed. The E5260A program memory feature greatly speeds up repetitive measurements.

The B1500A and B1505A each have 10 slots for maximum flexibility.

To learn more...

Please visit our website below and download our application note on solar cell evaluation (literature number: 5990-4428EN). Sample programs are also available. For more information on the B1500A please go to:

www.agilent.com/find/b1500a

5 Agilent EasyEXPERT software gets you up and running quickly

We can help you:

- Reduce your start-up costs. EasyEXPERT software meets the requirements of both beginning and experienced engineers.
- Improve your measurement efficiency. EasyEXPERT has built-in graphing and data analysis capabilities.
- Unify your test environment. Desktop EasyEXPERT is FREE and it supports all of the products shown in this flyer (measurement capabilities vary depending on product).

www.agilent.com

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2009 Printed in USA, August 5, 2009 5990-4434EN

